08. Linearized Model

Linearized Lateral-Directional Model

The full lateral-directional state vector contains 11 variables. When we linearize around a trim state we can ignore the x, z, and pitch variables.

We will also choose to include the sideslip angle \beta in the state, where:

\begin{aligned} v &= V \sin \beta \\ \\ \bar{v} &= V^* \cos \beta^* \bar{\beta} \\ \\ \dot{\bar{\beta}} &= \frac{1}{V^* \cos \beta^*} \dot{\bar{v}} \end{aligned}

The linearized model we use looks like this:

\begin{aligned} \begin{bmatrix} \dot{\bar{\beta}} \\ \dot{\bar{p}} \\ \dot{\bar{r}} \\ \dot{\bar{\phi}} \\ \dot{\bar{\psi}} \\ \end{bmatrix} &= \begin{bmatrix} Y_v & \frac{Y_p}{V^* \cos \beta^*} & \frac{Y_r}{V^* \cos \beta^*} & \frac{g \cos \theta^* \cos \phi^*}{V^* \cos \beta^*} & 0 \\ L_v V^* \cos \beta^* & L_p & L_r & 0 & 0 \\ N_v V^* \cos \beta^* & N_p & N_r & 0 & 0 \\ 0 & 1 & \cos \phi^* \tan \theta^* & q^* \cos \phi^* \tan \theta^* \\ & & & -r^* \sin \phi^* \tan \theta^* & 0 \\ 0 & 0 & \cos \phi^* \sec \theta^* & p^* \cos \phi^* \sec \theta^* \\ & & & -r^* \sin \phi^* \sec \theta^* & 0 \end{bmatrix} \cdot \begin{bmatrix} \bar{\beta} \\ \bar{p} \\ \bar{r} \\ \bar{\phi} \\ \bar{\psi} \end{bmatrix} \\ &+ \begin{bmatrix} \frac{Y_{\delta a}}{V^* \cos \beta^*} & \frac{Y_{\delta r}}{V^* \cos \beta^*} \\ L_{\delta a} & L_{\delta r} & \\ N_{\delta a} & N_{\delta r} & \\ 0 & 0 \\ 0 & 0 \\ \end{bmatrix} \cdot \begin{bmatrix} \bar{\delta} a\\ \bar{\delta} r \end{bmatrix} \end{aligned}

Take a look at the fixed wing cheat sheet for a more detailed explanation of the various coefficients.